On the horseshoe conjecture for maximal distance minimizers

Yana Teplitskaya

March 27, 2016

We study the properties of sets Σ having the minimal length over the class of closed connected sets Σ ⊂ \mathbb{R}^2 satisfying the inequality on energy

\[F_M(Σ) := \max_{y \in M} \text{dist} \ (y, Σ) \leq r \]

for a given compact set \(M \subset \mathbb{R}^2 \) and some given \(r > 0 \).

Let \(M \) be a closed convex curve with the minimal radius of curvature \(R > r \). Then the connected curve Σ is called a horseshoe, if \(F_M(Σ) = r \) and Σ is a union of an arc \(q \) of \(M_r \) (the shift of \(M \) on \(r \) toward the inner normal direction) with two tangent segments to \(M_r \) in the different ends of \(q \) (see Figure 1).

We prove that for every closed convex curve \(M \) with the minimal radius of curvature \(R \) and for every \(r < R/5 \) the set of minimizers contains only horseshoes.

Hereby we prove the conjecture of Miranda, Paolini and Stepanov describing the set of minimizers for \(M \) a circumference of radius \(R > 0 \) for the big enough ratio \(R/r \).

![Figure 1: A horseshoe.](image-url)