# Techmath - Math Seminars in Israel

*Announcement:*

Technion-Israel Institute of Technology

Center for Mathematical Sciences

Supported by the Mallat Family Fund for Research in Mathematics

Invites you to a

**Special Lecture Series by Professor Andrzej Zuk (Université Paris 7)**

For more information:

http://cms-math.net.technion.ac.il/special-lecture-series-prof-andrzej-zuk

*Abstract:*

We shall present the background of Arveson-Douglas conjecture on essential normality, and discuss two papers by Ron Douglas and Yi Wang on the subject:

1) "Geometric Arveson-Douglas Conjecture and Holomorphic Extension"

link: https://arxiv.org/pdf/1511.00782.pdf

2) "Geometric Arveson-Douglas Conjecture - Decomposition of Varieties"

*Abstract:*

By Quantum Matrix algebras one usually means the algebras defined via braidings,i.e. solutions to the Quantum Yang-Baxter equation. I plan to discuss the problemof classification of braidings. Also, I plan to introduce some Quantum Matrixalgebras and exhibit their properties. In particular, I plan to definequantum analogs of basic symmetric polynomials (elementary, full, Schur...)and to present a quantum version of the Cayley-Hamilton identity.The talk is supposed to be introductory.

*Abstract:*

Under the assumption of the GRH(Generalized Riemann Hypothesis), we show that there is a real quadratic field K such that the étale fundamental group of the spectrum of the ring of integers of K is isomorphic to A5. To the best of the author's knowledge, this is the first example of a nonabelian simple étale fundamental group in the literature under the assumption of the GRH. (The talk will be basic and tha above notions will be defined).

*Abstract:*

Iterated Function Systems (IFS) have been at the heart of fractal geometryIterated Function Systems (IFS) have been at the heart of fractal geometry almost from its origin, and several generalizations for the notion of IFS have been suggested. Subdivision schemes are widely used in computer graphics and attempts have been made to link limits generated by subdivision schemes to fractals generated by IFS. With an eye towards establishing connection between non-stationary subdivision schemes and fractals, this talk introduces a non-stationary extension of Banach fixed-point theorem. We introduce the notion of â?¯trajectories of maps defined by function systemsâ?¯ which may be considered as a new generalization of the traditional IFS. The significance and the convergence properties of â??forwardâ?? and â??backwardâ?? trajectories is presented. Unlike the ordinary fractals which are self-similar at different scales, the attractors of these trajectories may have different structures at different scales. Joint work with Nira Dyn and Puthan Veedu Viswanathan.

*Abstract:*

In tame geometry, a cell (or cylinder) is defined as follows. A onedimensional cell is an interval; a two-dimensional cell is the domainbounded between the graphs of two functions on a one-dimensional cell;and so on. Cellular decomposition (covering or subdiving a set intocells) and preparation theorems (decomposing the domain of a functioninto cells where the function has a simple form) are two of the keytechnical tools in semialgebraic, subanalytic and o-minimal geometry.

Cells are normally seen as intrinsically real objects, defined interms of the order relation on $\mathbb R$. We (joint with Novikov)introduce the notion of \emph{complex cells}, a complexification ofreal cells where real intervals are replaced by complexannuli. Complex cells are naturally endowed with a notion of analyticextension to a neighborhood, called $\delta$-extension. It turns outthat complex cells carry a rich hyperbolic-geometric structure, andthe geometry of a complex cell embedded in its $\delta$-extensionoffers powerful new tools from geometric function theory that areinaccessible in the real setting. Using these tools we show that thereal cells of the subanalytic cellular decomposition and preparationtheorems can be analytically continued to complex cells.

Complex cells are closely related to uniformization and resolution ofsingularities constructions in local complex analytic geometry. Inparticular we will see that using complex cells, these constructionscan be carried out uniformly over families (which is impossible in theclassical setting). If time permits I will also discuss how thisrelates to the Yomdin-Gromov theorem on $C^k$-smooth resolutions andsome modern variations.

*Abstract:*

(This is is the second of two lectures on this subject)

We shall present the background of Arveson-Douglas conjecture on essential normality, and discuss two papers by Ron Douglas and Yi Wang on the subject:

1) "Geometric Arveson-Douglas Conjecture and Holomorphic Extension"

link: https://arxiv.org/pdf/1511.00782.pdf

2) "Geometric Arveson-Douglas Conjecture - Decomposition of Varieties"

*Abstract:*

Dirichlet's Theorem states that for a real mxn matrix A, ||Aq+p||^m ≤ t, ||q||^n < t has nontrivial integer solutions for all t > 1. Davenport and Schmidt have observed that if 1/t is replaced with c/t, c<1, almost no A has the property that there exist solutions for all sufficiently large t. Replacing c/t with an arbitrary function, it's natural to ask when precisely does the set of such A drop to a null set. In the case m=1=n, we give an answer using dynamics of continued fractions. We then discuss an approach to higher dimensions based on dynamics on the space of lattices. Where this approach meets an obstruction, a similar approach to the analogous inhomogeneous approximation problem will succeed. Joint work with Dmitry Kleinbock.

*Abstract:*

We will survey recent developments in the symplectictopology that lead to various notions of distance on the category ofLagrangian submanifolds of a symplectic manifold. We will explain boththe algebraic as well as geometric sides of the story and outline someapplications.

*Announcement:*

Technion–Israel Institute of Technology

Center for Mathematical Sciences

Supported by the Mallat Family Fund for Research in Mathematics

Invite you to a

**Special lecture Series by Professor Paul Biran (ETH Zurich)**

For more information: http://cms-math.net.technion.ac.il/special-lecture-series-professor-paul-biran/ ** **

*Abstract:*

The Landau-de Gennes model is a widely used continuum description of nematic liquid crystals, in which liquid crystal configurations are described by fields taking values in the space of real, symmetric traceless $3\times 3$ matrices (called $Q$-tensors in this context). The model is an extension of the simpler $S^2$- or $RP^2$-valued Oseen-Frank theory, and provides a relaxation of an ${\mathbb R}P^2-$, $S^2-$ or $S^3$-valued harmonic map problem on two- and three-dimensional domains. There are similarities as well as differences with the $\mathbb{C}$-valued Ginzburg-Landau model.There is current interest in understanding the structure and disposition of defects in the Landau-de Gennes model. After introducing and motivating the model, I will discuss some recent and current work on defects in two-dimensional domains, in the harmonic-map limit as well as perturbations therefrom This is joint work with G di Fratta, V Slastikov and A Zarnescu.

*Abstract:*

TBA

*Abstract:*

T.B.A.

*Abstract:*

T.B.A.

*Abstract:*

TBA

*Abstract:*

T.B.A.

*Abstract:*

TBA

*Announcement:*

Technion – Israel Institute of Technology

supported by the Mallat Family Fund for Research in Mathematics

and

THE ISRAEL ACADEMY OF SCIENCES AND HUMANITIESThe Batsheva de Rothschild Fund forThe Advancement of Science in IsraelThe American Foundation for Basic Research in IsraelInvites you to

#### The Batsheva de Rothschild Seminar on the Hardy-type inequalities and elliptic PDEs

7-11.01.2018

dedicated to Professor Moshe Marcus 80th birthday!

**Organizing committee:**

Prof. Dan Mangoubi, Einstein Institute of Mathematics

Prof. Yehuda Pinchover, Technion – Israel Institute of Technology

Prof. Mikhail Sodin, Tel Aviv University

For More information:

*Announcement:*

Technion–Israel Institute of Technology

Center for Mathematical Sciences

Supported by the Mallat Family Fund for Research in Mathematics

invite you to a workshop on the topic of

**Nonpositively Curved Groups on the Mediterranean**

**Nahsholim, 23-29.5.18**

**Organizers:**

Kim Ruane,Tufts University

Michah Sageev, Technion–Israel Institute of Technology

Daniel Wise, McGill University

**For more information:**

** http://cms-math.net.technion.ac.il/nonpositively-curved-groups-on-the-mediterranean/ **