Sparsity Constrained Nonlinear Optimization:
Optimality Conditions and Algorithms

Amir Beck

Technion - Israel Institute of Technology
Haifa, Israel

Joint work with Yonina Eldar, EE, Technion.

Infinite Products and their Applications,
Department of Mathematics, Technion, May 21-24, 2012
The Sparsity Constrained Problem

\[(P): \min \quad f(x) \quad \text{s.t.} \quad \|x\|_0 \leq s\]

- \(f\) - continuously differentiable function.
- \(s\) - a positive integer \((s \ll n)\).
- \(\|x\|_0 = \#\{i : x_i \neq 0\}\) - number of nonzero elements.
The Sparsity Constrained Problem

\[(P): \begin{align*}
\text{min} & \quad f(x) \\
\text{s.t.} & \quad \|x\|_0 \leq s
\end{align*}\]

- \(f\) - continuously differentiable function.
- \(s\) - a positive integer \((s \ll n)\).
- \(\|x\|_0 = \#\{i : x_i \neq 0\}\) - number of nonzero elements.

Problem \((P)\) is a difficult nonconvex, noncontinuous problem.
The basic problem in CS is:

Compressive Sensing: Find a sparse vector x satisfying the underdetermined linear system $Ax = b$ ($m \ll n$).

- Under suitable conditions on A, only $s \log n$ measurements are needed to recover x. [Donoho]
The basic problem in CS is:

Compressive Sensing: Find a sparse vector \(x \) satisfying the underdetermined linear system \(Ax = b \) \((m \ll n)\).

- Under suitable conditions on \(A \), only \(s \log n \) measurements are needed to recover \(x \). [Donoho]
- When noise is present it is natural to consider problem (P) with
 \[f(x) = f_{LI}(x) \equiv \|Ax - b\|^2 \]

 \[
 \begin{align*}
 \min & \quad \|Ax - b\|^2 \\
 \text{s.t.} & \quad \|x\|_0 \leq s
 \end{align*}
 \]
The basic problem in CS is:

Compressive Sensing: Find a sparse vector x satisfying the underdetermined linear system $Ax = b$ ($m \ll n$).

- Under suitable conditions on A, only $s \log n$ measurements are needed to recover x. [Donoho]
- When noise is present is is natural to consider problem (P) with $f(x) = f_{LI}(x) \equiv \|Ax - b\|^2$

$$\min \|Ax - b\|^2$$
$$\text{s.t. } \|x\|_0 \leq s$$

- Other formulations:

$$\min \|x\|_0$$
$$\text{s.t. } \|Ax - b\|^2 \leq \rho$$

$$\min \{\|Ax - b\|^2 + \lambda \|x\|_0\}$$
Algorithms for "solving" CS:

- **Greedy-based**: Matching Pursuit (MP) [Mallat & Zhang, 93'] and Orthogonal Matching pursuit (OMT) [Mallat 99'] (sequentially "discovering" the support).
Algorithms for "solving" CS:

- **Greedy-based**: Matching Pursuit (MP) [Mallat & Zhang, 93’] and Orthogonal Matching pursuit (OMT)[Mallat 99’] (sequentially "discovering" the support).

- **Iterative Hard Thresholding (IHT)**: [Blumensath, Davies 04’]

\[x^{k+1} = H_s(x^k - A^T(Ax - b)) \]

\(H_s \) - hardthresholding operator.

convergence to a local minimum if \(\|A\| < 1 \).
Algorithms for "solving" CS:

- **Greedy-based:** Matching Pursuit (MP) [Mallat & Zhang, 93'] and Orthogonal Matching pursuit (OMT)[Mallat 99'] (sequentially "discovering" the support).

- **Iterative Hard Thresholding (IHT):** [Blumensath, Davies 04']

\[x^{k+1} = H_s(x^k - A^T(Ax - b)) \]

- \(H_s \) - hardthresholding operator.
- Convergence to a local minimum if \(\|A\| < 1 \).

- Many more... (StOMP, CoSAMP) (Needell, Tropp, Starck, Wright, Elad...)
Given m symmetric matrices A_1, \ldots, A_m, find a vector x satisfying:

\[x^T A_i x \approx c_i, \quad i = 1, \ldots, m \]

\[\|x\|_0 \leq s. \]
Given m symmetric matrices A_1, \ldots, A_m, find a vector x satisfying:

$$ x^T A_i x \approx c_i, \quad i = 1, \ldots, m $$

$$ \|x\|_0 \leq s. $$

Can be formulated as problem (P) with

$$ f(x) = f_{QU}(x) = \sum_{i=1}^{m} (x^T A_i x - c_i)^2 $$

$$ \min \quad \sum_{i=1}^{m} (x^T A_i x - c_i)^2 $$

$$ \text{s.t.} \quad \|x\|_0 \leq s. $$
2nd Prototype Example - Recovery from Quadratic Meas.

Given \(m \) symmetric matrices \(\mathbf{A}_1, \ldots, \mathbf{A}_m \), find a vector \(\mathbf{x} \) satisfying:

\[
\mathbf{x}^T \mathbf{A}_i \mathbf{x} \approx c_i, \quad i = 1, \ldots, m
\]
\[
\|\mathbf{x}\|_0 \leq s.
\]

Can be formulated as problem (P) with

\[
f(\mathbf{x}) = f_{QU}(\mathbf{x}) = \sum_{i=1}^{m} (\mathbf{x}^T \mathbf{A}_i \mathbf{x} - c_i)^2
\]

\[
\min \sum_{i=1}^{m} (\mathbf{x}^T \mathbf{A}_i \mathbf{x} - c_i)^2 \\
\text{s.t.} \quad \|\mathbf{x}\|_0 \leq s.
\]

- sub-wavelength optical imaging (Shechtman, Eldar, Szameit, Segev): SDR based.
- phase retrieval (recovery of a signal from the magnitude of its Fourier transform). Many many works (on the non-sparse version).
Main Objectives

(P): \[\min_{x} f(x) \quad \text{s.t.} \quad \|x\|_0 \leq s \]

- Develop necessary optimality conditions for problem (P).
Main Objectives

\[(P): \min_{\mathbf{x}} f(\mathbf{x}) \quad \text{s.t.} \quad \|\mathbf{x}\|_0 \leq s\]

- Develop necessary optimality conditions for problem (P).
- Construct algorithms aimed to find points satisfying the optimality conditions.
Part I: Optimality Conditions
Definition A vector \(x^* \in C_s \) is called a basic feasible (BF) vector of (P) if:

- when \(\| x^* \|_0 < s \), \(\nabla f(x^*) = 0 \);
- when \(\| x^* \|_0 = s \), \(\nabla_i f(x^*) = 0 \) for all \(i \in l_1(x^*) \).

where \(l_1(x^*) \) is the support of \(x^* \): \(l_1(x^*) = \{ i : x^*_i \neq 0 \} \).
Definition A vector $\mathbf{x}^* \in C_s$ is called a basic feasible (BF) vector of (P) if:

1. when $\|\mathbf{x}^*\|_0 < s$, $\nabla f(\mathbf{x}^*) = 0$;
2. when $\|\mathbf{x}^*\|_0 = s$, $\nabla_i f(\mathbf{x}^*) = 0$ for all $i \in l_1(\mathbf{x}^*)$.

where $l_1(\mathbf{x}^*)$ is the support of \mathbf{x}^*: $l_1(\mathbf{x}^*) = \{i : x_i^* \neq 0\}$.

Result: \mathbf{x}^* optimal solution of (P) $\Rightarrow \mathbf{x}^*$ basic feasible.
Definition: A vector $x^* \in C_s$ is called a basic feasible (BF) vector of (P) if:

- when $\|x^*\|_0 < s$, $\nabla f(x^*) = 0$;
- when $\|x^*\|_0 = s$, $\nabla_i f(x^*) = 0$ for all $i \in l_1(x^*)$.

where $l_1(x^*)$ is the support of x^*: $l_1(x^*) = \{i : x_i^* \neq 0\}$.

Result: x^* optimal solution of (P) $\Rightarrow x^*$ basic feasible.

Example:

- $f = f_{LI}$, A is s-regular (any s columns are linearly independent $\equiv \text{spark}(A) \geq s + 1$).
Definition A vector $x^* \in C_s$ is called a basic feasible (BF) vector of (P) if:

- when $\|x^*\|_0 < s$, $\nabla f(x^*) = 0$;
- when $\|x^*\|_0 = s$, $\nabla_i f(x^*) = 0$ for all $i \in l_1(x^*)$.

where $l_1(x^*)$ is the support of x^*: $l_1(x^*) = \{i : x^*_i \neq 0\}$.

Result: x^* optimal solution of $(P) \Rightarrow x^*$ basic feasible.

Example:

- $f = f_{LI}$, A is s-regular (any s columns are linearly independent $\equiv \text{spark}(A) \geq s + 1$).

Here each choice of a support $S \subseteq \{1, 2, \ldots, n\}$ with $|S| \leq s$ gives rise to a single BF solution:

$$x_S = (A_S^T A_S)^{-1} A_S^T b$$
Definition A vector \(x^* \in C_s \) is called a basic feasible (BF) vector of (P) if:

1. when \(\|x^*\|_0 < s \), \(\nabla f(x^*) = 0 \);
2. when \(\|x^*\|_0 = s \), \(\nabla_i f(x^*) = 0 \) for all \(i \in l_1(x^*) \).

where \(l_1(x^*) \) is the support of \(x^* \): \(l_1(x^*) = \{ i : x_i^* \neq 0 \} \).

Result: \(x^* \) optimal solution of (P) \(\Rightarrow x^* \) basic feasible.

Example:

- \(f = f_{LI} \), \(A \) is \(s \)-regular (any \(s \) columns are linearly independent \(\equiv \text{spark}(A) \geq s + 1 \)).

- Here each choice of a support \(S \subseteq \{1, 2, \ldots, n\} \) with \(|S| \leq s \) gives rise to a single BF solution:

\[
x_S = (A_S^T A_S)^{-1} A_S^T b
\]

- Only a finite number of BF vectors in this setting.
2nd Optimality Condition: Stationarity

Well known optimality conditions for convex-constrained differentiable problem:

\[\text{(M)}: \quad \min_{\mathbf{x}} \ f(\mathbf{x}) \quad \text{s.t.} \quad \mathbf{x} \in C \]

- \(f \) - continuously differentiable function.
- \(C \) - closed and convex set.
Well known optimality conditions for convex-constrained differentiable problem:

\[(M): \quad \min_{x \in C} f(x) \]

- \(f \) - continuously differentiable function.
- \(C \) - closed and convex set.
- \(x^* \) is a **stationary** point if

\[(S_1) \quad \langle \nabla f(x^*), x - x^* \rangle \geq 0, \quad \forall x \in C \]
2nd Optimality Condition: Stationarity

Well known optimality conditions for convex-constrained differentiable problem:

\[(M): \min_{x} f(x) \text{ s.t. } x \in C\]

- \(f\) - continuously differentiable function.
- \(C\) - closed and convex set.
- \(x^*\) is a **stationary** point if

\[(S_1) \quad \langle \nabla f(x^*), x - x^* \rangle \geq 0, \quad \forall x \in C\]

Equivalently: \(x^*\) is a stationary point iff

\[(S_2) \quad x^* = P_C \left(x^* - \frac{1}{L} \nabla f(x^*) \right)\]

\[P_C(y) = \arg\min_{x \in C} \|x - y\|^2\] - orthogonal projection onto \(C\) (unique).
2nd Optimality Condition: Stationarity

Well known optimality conditions for convex-constrained differentiable problem:

\[(M): \min \ f(x) \quad \text{s.t.} \quad x \in C\]

- \(f\) - continuously differentiable function.
- \(C\) - closed and convex set.
- \(x^*\) is a stationary point if

\[(S_1) \quad \langle \nabla f(x^*), x - x^* \rangle \geq 0, \quad \forall x \in C\]

- Equivalently: \(x^*\) is a stationary point iff

\[(S_2) \quad x^* = P_C \left(x^* - \frac{1}{L} \nabla f(x^*)\right)\]

\[P_C(y) = \arg\min_{x \in C} \|x - y\|^2\] - orthogonal projection onto \(C\) (unique).

\[(S_1) \iff (S_2)\] independently of \(L\).
2nd Optimality Condition: Stationarity

Well known optimality conditions for convex-constrained differentiable problem:

\[(M): \min_{\text{s.t. } x \in C} f(x) \]

- \(f \) - continuously differentiable function.
- \(C \) - closed and convex set.
- \(x^* \) is a stationary point if

\[(S_1) \quad \langle \nabla f(x^*), x - x^* \rangle \geq 0, \quad \forall x \in C \]

- Equivalently: \(x^* \) is a stationary point iff

\[(S_2) \quad x^* = P_C \left(x^* - \frac{1}{L} \nabla f(x^*) \right) \]

\[P_C(y) = \arg\min_{x \in C} \|x - y\|^2 \] - orthogonal projection onto \(C \) (unique).

\((S_1) \Leftrightarrow (S_2) \) independently of \(L \).

For Problem \(P \) we can generalize \((S_2) \) (not \((S_1) \)), but...
Back to the sparsity constrained problem (P).
Back to the sparsity constrained problem (P).

Definition. \mathbf{x}^* is an L-stationary point of (P) if

$$[\text{NC}_L] \quad \mathbf{x}^* \in P_{C_s} \left(\mathbf{x}^* - \frac{1}{L} \nabla f(\mathbf{x}^*) \right).$$

$$C_s = \{ \mathbf{x} \in \mathbb{R}^n : \|\mathbf{x}\|_0 \leq s \}$$
Back to the sparsity constrained problem (P).

Definition. \(x^* \) is an \(L \)-stationary point of (P) if

\[
\begin{bmatrix}
\mathbf{NC}_L \\
\end{bmatrix} \quad x^* \in P_{C_s} \left(x^* - \frac{1}{L} \nabla f(x^*) \right).
\]

\[C_s = \{ x \in \mathbb{R}^n : \| x \|_0 \leq s \}\]

- \(P_{C_s} = H_s \) is the **hard thresholding** operator which is a multivalued mapping, e.g.,

\[
P_{C_2}((2, 1, 1)^T) = \{ (2, 1, 0)^T, (2, 0, 1)^T \}.
\]
Back to the sparsity constrained problem (P).

Definition. \(x^* \) is an \(L \)-stationary point of (P) if

\[
[NC_L] \quad x^* \in P_{Cs} \left(x^* - \frac{1}{L} \nabla f(x^*) \right).
\]

\(Cs = \{ x \in \mathbb{R}^n : \|x\|_0 \leq s \} \)

- \(P_{Cs} = H_s \) is the hard thresholding operator which is a multivalued mapping, e.g.,

\[
P_{C_2}((2, 1, 1)^T) = \{ (2, 1, 0)^T, (2, 0, 1)^T \}.
\]

A more explicit condition

Lemma: \(x^* \) is an \(L \)-stationary point iff

\[
|\nabla_i f(x^*)| \begin{cases} \leq LM_s(x^*) & \text{if } i \in l_0(x^*), \\ = 0 & \text{if } i \in l_1(x^*). \end{cases}
\]

\(l_0(x^*) = \{ i : x_i^* = 0 \}, M_s(x^*) \) - \(s \)-th largest absolute value component.
\(\mathbf{x}^* \) \(L \)-stationary \(\Rightarrow \) \(\mathbf{x}^* \) is BF.
\(\mathbf{x}^* \) \(L \)-stationary \(\Rightarrow \mathbf{x}^* \) is BF.

\(L \)-stationarity does depend on the constant \(L \) (as opposed to the case of convex constraints): \(L \)-stationarity is a more restrictive property as \(L \) gets smaller.
x^* L-stationary $\Rightarrow x^*$ is BF.

L-stationarity does depend on the constant L (as opposed to the case of convex constraints): L-stationarity is a more restrictive property as L gets smaller.

Stationarity Level:

If $\|x^*\|_0 < s$, then $S_L(x^*) = 0$.

If $\|x^*\|_0 = s$, then

$$SL(x^*) \equiv \max_{i \in I_0(x^*)} \frac{\nabla_i f(x^*)}{M_s(x^*)}.$$
• x^* L-stationary $\Rightarrow x^*$ is BF.

• L-stationarity does depend on the constant L (as opposed to the case of convex constraints): L-stationarity is a more restrictive property as L gets smaller.

• Stationarity Level:
 If $\|x^*\|_0 < s$, then $S_L(x^*) = 0$.
 If $\|x^*\|_0 = s$, then

$$SL(x^*) \equiv \max_{i \in I_0(x^*)} \frac{|\nabla_i f(x^*)|}{M_s(x^*)}.$$

Question: for what values of L is L-stationarity a necessary optimality condition?
We will occasionally (but not always!) make the following assumption:

The Lipschitz Assumption. \(\nabla f \) is Lipschitz with constant \(L(f) \) over \(\mathbb{R}^n \):

\[
\| \nabla f(x) - \nabla f(y) \| \leq L(f) \| x - y \| \quad \text{for every} \ x, y \in \mathbb{R}^n.
\]
The Lipschitz Assumption

We will occasionally (but not always!) make the following assumption:

The Lipschitz Assumption. ∇f is Lipschitz with constant $L(f)$ over \mathbb{R}^n:

\[
\|\nabla f(x) - \nabla f(y)\| \leq L(f)\|x - y\| \quad \text{for every } x, y \in \mathbb{R}^n.
\]

- Satisfied for $f = f_{LI}$ with $L(f) = 2\lambda_{\max}(A^T A)$.
- Not satisfied for $f = f_{QU}$.
The Lipschitz Assumption

We will occasionally (but not always!) make the following assumption:

The Lipschitz Assumption. \(\nabla f \) is Lipschitz with constant \(L(f) \) over \(\mathbb{R}^n \):

\[
\| \nabla f(x) - \nabla f(y) \| \leq L(f) \| x - y \| \quad \text{for every } x, y \in \mathbb{R}^n.
\]

- Satisfied for \(f = f_{LI} \) with \(L(f) = 2\lambda_{\max}(A^TA) \).
- Not satisfied for \(f = f_{QU} \).

Theorem. Lipschitz assumption holds + \(L > L(f) \) \(\Rightarrow \)

\(x^* \) optimal solution \(\Rightarrow x^* \) is an \(L - \) stationary point.
Is there a method able to find an L-stationary point for $L > L(f)$?

Is it possible to prove that L-stationarity is a necessary optimality condition for some $L \leq L(f)$?

Is there a better optimality condition, relevant also when the Lipschitz assumption does not hold?
Questions

- Is there a method able to find an L-stationary point for $L > L(f)$?
- Is it possible to prove that L-stationarity is a necessary optimality condition for some $L \leq L(f)$?
- Is there a better optimality condition, relevant also when the Lipschitz assumption does not hold?

The answer to all questions is YES!!
A definition of local minimum: cannot improve the objective by making a change of at most two coordinates.

Definition. Let \mathbf{x}^* be a feasible solution of (P). Then \mathbf{x}^* is called a coordinate-wise (CW) minimum of (P) if one of the following cases hold true:

Case I: $\|\mathbf{x}^*\|_0 < s$ and for every $i = 1, 2, \ldots, n$ one has:

$$f(\mathbf{x}^*) = \min_{t \in \mathbb{R}} f(\mathbf{x}^* + t\mathbf{e}_i).$$

Case II: $\|\mathbf{x}^*\|_0 = s$ and for every $i \in I_1(\mathbf{x}^*), j = 1, 2, \ldots, n$:

$$f(\mathbf{x}^*) \leq \min_{t \in \mathbb{R}} f(\mathbf{x}^* - x_i^* \mathbf{e}_i + t\mathbf{e}_j).$$
A definition of local minimum: cannot improve the objective by making a change of at most two coordinates.

Definition. Let x^* be a feasible solution of (P). Then x^* is called a coordinate-wise (CW) minimum of (P) if one of the following cases hold true:

Case I: $\|x^*\|_0 < s$ and for every $i = 1, 2, \ldots, n$ one has:

$$f(x^*) = \min_{t \in \mathbb{R}} f(x^* + te_i).$$

Case II: $\|x^*\|_0 = s$ and for every $i \in l_1(x^*), j = 1, 2, \ldots, n$:

$$f(x^*) \leq \min_{t \in \mathbb{R}} f(x^* - x^*_i e_i + te_j).$$

x^* optimal solution $\Rightarrow x^*$ CW minimum.
A definition of local minimum: cannot improve the objective by making a change of at most two coordinates.

Definition. Let x^* be a feasible solution of (P). Then x^* is called a coordinate-wise (CW) minimum of (P) if one of the following cases hold true:

Case I: $\|x^*\|_0 < s$ and for every $i = 1, 2, \ldots, n$ one has:

$$f(x^*) = \min_{t \in \mathbb{R}} f(x^* + te_i).$$

Case II: $\|x^*\|_0 = s$ and for every $i \in l_1(x^*), j = 1, 2, \ldots, n$:

$$f(x^*) \leq \min_{t \in \mathbb{R}} f(x^* - x_i^* e_i + te_j).$$

- x^* optimal solution \Rightarrow x^* CW minimum.
- x^* CW-minimum \Rightarrow x^* BF vector.
Remarks on CW-minima

- CW-minimality is a necessary optimality condition regardless of the validity of the Lipschitz assumption.
Remarks on CW-minima

- CW-minimality is a necessary optimality condition regardless of the validity of the Lipschitz assumption.
- Easy to check CW-minimality for the linear \((f = f_{LI})\) and quadratic \((f = f_{QU})\) cases. In the latter case it amounts to solving a cubic equation.
CW-minimality is a necessary optimality condition regardless of the validity of the Lipschitz assumption.

Easy to check CW-minimality for the linear \(f = f_{LI} \) and quadratic \(f = f_{QU} \) cases. In the latter case it amounts to solving a cubic equation.

Under the Lipschitz assumption, is there a relation between CW-minimality to \(L(f) \)-stationarity?
Under the Lipschitz assumption,

- For any $i \neq j$ there exists a $L_{i,j}(f)$ for which:

 $$\|\nabla_{i,j} f(x) - \nabla_{i,j} f(x + d)\| \leq L_{i,j}(f)\|d\|,$$

 for any $d \in \mathbb{R}^n$ satisfying $d_k = 0$ for any $k \neq i, j$.

Local Lipschitz Constant

Under the Lipschitz assumption,

- For any $i \neq j$ there exists a $L_{i,j}(f)$ for which:

$$
\| \nabla_{i,j} f(x) - \nabla_{i,j} f(x + d) \| \leq L_{i,j}(f) \| d \|,
$$

for any $d \in \mathbb{R}^n$ satisfying $d_k = 0$ for any $k \neq i, j$.

- The Local Lipschitz constant is

$$
L_2(f) = \max_{i \neq j} L_{i,j}(f)
$$
Under the Lipschitz assumption,

- For any $i \neq j$ there exists a $L_{i,j}(f)$ for which:

$$\|\nabla_{i,j}f(x) - \nabla_{i,j}f(x + d)\| \leq L_{i,j}(f)\|d\|,$$

for any $d \in \mathbb{R}^n$ satisfying $d_k = 0$ for any $k \neq i, j$.

- the Local Lipschitz constant is

$$L_2(f) = \max_{i \neq j} L_{i,j}(f)$$

- $L_2(f) \leq L(f)$.

Example: $f(x) = x^TQx + 2b^Tx$ with $Q_n = I_n + J_n$ (I_n - identity, J_n - all ones)
Local Lipschitz Constant

Under the Lipschitz assumption,

- For any \(i \neq j \) there exists a \(L_{i,j}(f) \) for which:

\[
\| \nabla i,j f(x) - \nabla i,j f(x + d) \| \leq L_{i,j}(f) \| d \|,
\]

for any \(d \in \mathbb{R}^n \) satisfying \(d_k = 0 \) for any \(k \neq i, j \).

- The Local Lipschitz constant is

\[
L_2(f) = \max_{i \neq j} L_{i,j}(f)
\]

- \(L_2(f) \leq L(f) \).

Example: \(f(x) = x^T Q x + 2b^T x \) with \(Q_n = I_n + J_n \) (\(I_n \) - identity, \(J_n \) - all ones)

\[
L(f) = 2 \lambda_{\text{max}}(Q_n) = 2(n + 1)
\]

On the other hand,

\[
L_{i,j}(f) = 2 \lambda_{\text{max}} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} = 6
\]
Local Lipschitz Constant

Under the Lipschitz assumption,

- For any $i \neq j$ there exists a $L_{i,j}(f)$ for which:

$$\|\nabla_{i,j}f(x) - \nabla_{i,j}f(x + d)\| \leq L_{i,j}(f)\|d\|,$$

for any $d \in \mathbb{R}^n$ satisfying $d_k = 0$ for any $k \neq i, j$.

- the **Local Lipschitz constant** is

$$L_2(f) = \max_{i \neq j} L_{i,j}(f)$$

- $L_2(f) \leq L(f)$.

Example: $f(x) = x^TQx + 2b^Tx$ with $Q_n = I_n + J_n$ (I_n - identity, J_n - all ones)

$$L(f) = 2\lambda_{\max}(Q_n) = 2(n + 1)$$

On the other hand,

$$L_{i,j}(f) = 2\lambda_{\max}\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} = 6$$

We got: $L(f) = 2(n + 1), L_2(f) = 6$
Theorem. Suppose that the Lipschitz assumption holds. If x^* is a CW-minimum, then it is also an $L_2(f)$—stationary point:

$$
|\nabla_i f(x^*)| \begin{cases}
\leq L_2(f)M_s(x^*) & i \in l_0(x^*) \\
= 0 & i \in l_1(x^*)
\end{cases}
$$
Theorem. Suppose that the Lipschitz assumption holds. If x^* is a CW-minimum, then it is also an $L_2(f)$-stationary point:

$$|
abla_i f(x^*)| \begin{cases}
\leq L_2(f) M_s(x^*) & i \in I_0(x^*) \\
= 0 & i \in I_1(x^*)
\end{cases}$$

without Lip. assumption

optimal solution of (P) \\[\downarrow\]
CW-minimum of (P) \\[\downarrow\]
BF vector of (P)
Theorem. Suppose that the Lipschitz assumption holds. If x^* is a CW-minimum, then it is also an $L_2(f)$—stationary point:

$$|\nabla_i f(x^*)| \begin{cases} \leq L_2(f)M_s(x^*) & i \in l_0(x^*) \\ = 0 & i \in l_1(x^*) \end{cases}$$

without Lip. assumption

optimal solution of (P) \downarrow
CW-minimum of (P) \downarrow
BF vector of (P)

with Lip. assumption

optimal solution of (P) \downarrow
CW-minimum of (P) \downarrow
$L_2(f)$—stationary \downarrow
BF vector of (P)
Example

\[f(x) = x^T Q x + 2b^T x \]
with

\[Q = I_5 + J_5, \quad b = -(3, 2, 3, 12, 5)^T \]

10 BF vectors:

\[x_1 = (1.3333, 0.3333, 0, 0, 0)^T, \]
\[x_2 = (1.0000, 0, 1.0000, 0, 0)^T, \]
\[x_3 = (-2.0000, 0, 0, 7.0000, 0)^T, \]
\[x_4 = (0.3333, 0, 0, 0, 2.3333)^T, \]
\[x_5 = (0, 0.3333, 1.3333, 0, 0)^T, \]
\[x_6 = (0, -2.6667, 0, 7.3333, 0)^T, \]
\[x_7 = (0, -0.3333, 0, 0, 2.6667)^T, \]
\[x_8 = (0, 0, -2.0000, 7.0000, 0)^T, \]
\[x_9 = (0, 0, 0.3333, 0, 2.3333)^T, \]
\[x_{10} = (0, 0, 0, 6.3333, -0.6667)^T. \]
Function values and stationarity levels:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-4.66</td>
<td>-6.00</td>
<td>-78</td>
<td>-12.66</td>
<td>-4.66</td>
<td>-82.66</td>
<td>-12.66</td>
<td>-78</td>
<td>-12.66</td>
<td>-72.66</td>
</tr>
<tr>
<td></td>
<td>62</td>
<td>20</td>
<td>3</td>
<td>56</td>
<td>62</td>
<td>1.25</td>
<td>58</td>
<td>3</td>
<td>56</td>
<td>11</td>
</tr>
</tbody>
</table>
Function values and stationarity levels:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-4.66</td>
<td>-6.00</td>
<td>-78</td>
<td>-12.66</td>
<td>-4.66</td>
<td>-82.66</td>
<td>-12.66</td>
<td>-78</td>
<td>-12.66</td>
<td>-72.66</td>
</tr>
<tr>
<td></td>
<td>62</td>
<td>20</td>
<td>3</td>
<td>56</td>
<td>62</td>
<td>1.25</td>
<td>58</td>
<td>3</td>
<td>56</td>
<td>11</td>
</tr>
</tbody>
</table>

$L_2(f) = 6$ and therefore only x_3, x_6, x_8 are candidates for optimal solutions.
Function values and stationarity levels:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-4.66</td>
<td>-6.00</td>
<td>-78</td>
<td>-12.66</td>
<td>-4.66</td>
<td>-82.66</td>
<td>-12.66</td>
<td>-78</td>
<td>-12.66</td>
<td>-72.66</td>
</tr>
<tr>
<td>1</td>
<td>62</td>
<td>20</td>
<td>3</td>
<td>56</td>
<td>62</td>
<td>1.25</td>
<td>58</td>
<td>3</td>
<td>56</td>
<td>11</td>
</tr>
</tbody>
</table>

- $L_2(f) = 6$ and therefore only x_3, x_6, x_8 are candidates for optimal solutions.
- $L(f) = 12 \Rightarrow$ the previous weaker result would also imply that x_{10} is a candidate.
Function values and stationarity levels:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-4.66</td>
<td>-6.00</td>
<td>-78</td>
<td>-12.66</td>
<td>-4.66</td>
<td>-82.66</td>
<td>-12.66</td>
<td>-78</td>
<td>-12.66</td>
<td>-72.66</td>
</tr>
<tr>
<td>x</td>
<td>62</td>
<td>20</td>
<td>3</td>
<td>56</td>
<td>62</td>
<td>1.25</td>
<td>58</td>
<td>3</td>
<td>56</td>
<td>11</td>
</tr>
</tbody>
</table>

- $L_2(f) = 6$ and therefore only x_3, x_6, x_8 are candidates for optimal solutions.
- $L(f) = 12 \Rightarrow$ the previous weaker result would also imply that x_{10} is a candidate.
- Only x_6 is a CW minima.
Previous Questions, Answers and Questions

Previous Questions:

- Is there a method able to find an L-stationary point for $L > L(f)$?
 YES - not yet shown

- Is it possible to prove that L-stationarity is a necessary optimality condition for some $L \leq L(f)$? YES

- Is there a better optimality condition, relevant also when the Lipschitz assumption does not hold? YES
Previous Questions:

- Is there a method able to find an L-stationary point for $L > L(f)$?
 YES - not yet shown

- Is it possible to prove that L-stationarity is a necessary optimality condition for some $L \leq L(f)$?
 YES

- Is there a better optimality condition, relevant also when the Lipschitz assumption does not hold?
 YES

New Question:

- Is there a method able to find a CW minima?
 YES - not yet shown
Part II: Algorithms
Two types of methods:

- **Iterative Hard-Thresholding** based on L-stationarity.
- **Sparse-simplex methods** coordinate descent-type method based on CW-minimality.
IHT is a fixed point method for solving the L-stationarity condition:

\[
\left[\text{NC}_L \right] \quad x^* \in P_{C_s} \left(x^* - \frac{1}{L} \nabla f(x^*) \right).
\]

IHT ($L > L(f)$)

\[
x^{k+1} = P_{C_s} \left(x^k - \frac{1}{L} \nabla f(x^k) \right).
\]
IHT is a fixed point method for solving the L-stationarity condition:

$$[NC_L] \quad x^* \in P_{C_s} \left(x^* - \frac{1}{L} \nabla f(x^*) \right).$$

IHT ($L > L(f)$)

$$x^{k+1} = P_{C_s} \left(x^k - \frac{1}{L} \nabla f(x^k) \right)$$

Theorem. Any accumulation point of is an L-stationary point ($L > L(f)$).
IHT when $f = f_{LI}$

Theorem. When $f = f_{LI}$, $L > L(f)$, the sequence generated by IHT method with stepsize $\frac{1}{L}$ converges.

Blumensath and Davies [04’]: convergence for $f = f_{LI}$ with $\|A\| < 1$ and stepsize $1/2$.
Theorem. When \(f = f_{LI} \), \(L > L(f) \), the sequence generated by IHT method with stepsize \(\frac{1}{L} \) converges.

Blumensath and Davies [04']: convergence for \(f = f_{LI} \) with \(\|A\| < 1 \) and stepsize 1/2.

Drawbacks

- The method is not guaranteed to generate \(L_2(f) \)-stationary points.
- Relevant only under Lip. assumption.
- Requires knowledge on the Lipschitz constant.
- Sensitive to the choice of \(L \).
Example

\[
\min \left\{ f(x_1, x_2) = 12x_1^2 + 20x_1x_2 + 32x_2^2 : \| (x_1; x_2)^T \|_0 \leq 1 \right\}
\]

\[
L(f) = 48.3961
\]

Two BF vectors: \((0, -9/16)\) - optimal solution. \((-1/12, 0)\) - non-optimal, SL=196.
The Greedy Sparse-Simplex (GSS) Method

- Aims at finding a CW-minimum.
- does not require a knowledge (or existence) of a Lipschitz constant.
- At each iteration finds the best change in at most two coordinates (best = lowest value).
- If the Lipschitz assumption holds, it is guaranteed to find $L_2(f)$-stationary points.
The GSS Method - Description

- **Initialization:** Choose $x_0 \in C_s$.

- **General step:** ($k = 0, 1, \ldots$)
 - If $\|x^k\|_0 < s$, then compute for every $i = 1, 2, \ldots, n$

 $$
 t_i \in \text{argmin}_{t \in \mathbb{R}} f(x^k + te_i), f_i = \min_{t \in \mathbb{R}} f(x^k + te_i).
 $$

 Let $i_k \in \text{argmin}_{i=1,\ldots,n} f_i$. If $f_{i_k} < f(x^k)$, then set
 $$
 x^{k+1} = x^k + t_{i_k} e_{i_k}.
 $$

 Otherwise, STOP.

 - If $\|x^k\|_0 = s$, then for every $i \in l_1(x^k)$ and $j = 1, \ldots, n$ compute

 $$
 t_{i,j} \in \text{argmin}_{t \in \mathbb{R}} f(x^k - x_i^k e_i + te_j), f_{i,j} = \min_{t \in \mathbb{R}} f(x^k - x_i^k e_i + te_j).
 $$

 Let $(i_k, j_k) \in \text{argmin}\{f_{i,j} : i \in l_1(x^k), j = 1, \ldots, n\}$. If $f_{i_k,j_k} < f(x^k)$,
 then set
 $$
 x^{k+1} = x^k - x_{i_k}^k e_{i_k} + t_{i_k,j_k} e_{j_k}.
 $$

 Otherwise, STOP.
At each iteration the algorithm explores all possible changes of at most two variables:

- **if** $\|x^k\|_0 < s$: changes the coordinate resulting with the largest decrease.
- **if** $\|x^k\|_0 = s$: two options:
 1. changes the coordinate in the support with the largest decrease.
 2. makes the “best” swap: removes a variable from the support and adds a new variable to the support (while optimizing it).
At each iteration the algorithm explores all possible changes of at most two variables:

- if $\|x^k\|_0 < s$: changes the coordinate resulting with the largest decrease.
- if $\|x^k\|_0 = s$: two options:
 1. changes the coordinate in the support with the largest decrease.
 2. makes the “best” swap: removes a variable from the support and adds a new variable to the support (while optimizing it).

- n 1D minimizations when $\|x\|_0 < s$.
- sn 1D minimizations when $\|x\|_0 = s$.
Theorem: Any Accumulation point of the GSS method is a CW-minimum.
Theorem: Any Accumulation point of the GSS method is a CW-minimum.

Consequently,

Corollary: Under the Lipschitz assumption, any Accumulation point of the GSS method is an $L_2(f)$-stationary point.
Matching Pursuit

Initialization: \(r^0 = b, x^0 = 0 \).
for \(k = 1 : s \)

1. \(m \in \arg\max_{i=1,...,n} \frac{|a_i^T r^k|}{\|a_i\|} \).
2. \(x^{k+1} = x^k - \frac{a_m^T r^k}{\|a_m\|^2} e_m \).
3. \(r^{k+1} = r^k - \frac{a_m^T r^k}{\|a_m\|^2} a_m \).
Matching Pursuit

Initialization: \(r^0 = b, x^0 = 0 \).

for \(k = 1 : s \)

\[m \in \text{argmax}_{i=1,\ldots,n} \frac{|a_i^T r^k|}{\|a_i\|}. \]

\[x^{k+1} = x^k - \frac{a_m^T r^k}{\|a_m\|^2} e_m. \]

\[r^{k+1} = r^k - \frac{a_m^T r^k}{\|a_m\|^2} a_m \]

The MP method coincides with the GSS method when started with the zeros vector for the first \(s \) iterations, BUT

- No need to start with the zeros vector in GSS.
- GSS allows removal of variables from the support (regret...) while the MP does not.
- GSS continues also when the maximal support is achieved.
Simulation details

- $f = f_{LI}$.
- 1000 realizations of $A \in \mathbb{R}^{4 \times 5}$, $b \in \text{Range}(A)$.
- GSS was initiated with the zeros vector.
Simulation details

- \(f = f_{LI} \).
- 1000 realizations of \(A \in \mathbb{R}^{4 \times 5}, b \in \text{Range}(A) \).
- GSS was initiated with the zeros vector.

Results:

- MP found the correct support in 452 cases. GSS found the correct vector in 652 cases.
Simulation details

- $f = f_{\text{LI}}$.
- 1000 realizations of $\mathbf{A} \in \mathbb{R}^{4 \times 5}$, $\mathbf{b} \in \text{Range}(\mathbf{A})$.
- GSS was initiated with the zeros vector.

Results:

- MP found the correct support in 452 cases. GSS found the correct vector in 652 cases.
- When allowing GSS start from 5 different random initial vectors, it found the correct vector in 952 cases.
The Partial Sparse-Simplex (PSS) Method

The GSS method:
- Finds a CW-minimum, but...
- Drawback: has no index selection strategy resulting with sn 1D minimizations.
The GSS method:
- Finds a CW-minimum, but...
- Drawback: has no index selection strategy resulting with \(sn \) 1D minimizations.

The partial sparse-simplex (PSS) method replaces all SWAPS with a single SWAP:

The SWAP stage in PSS:
- the variable leaving the support is the one with the minimal absolute value

\[
i \in \arg\min\{|x_i^k| : i \in I_1(x^k)\}
\]

- the variable entering the support is the one corresponding to the maximal absolute value partial derivative.

\[
j \in \arg\max\{|\nabla_j f(x^k)| : j \in I_0(x^k)\}
\]
Under the general setting:

Lemma. Any accumulation point of the PSS method is a BF-vector.
Under the general setting:

Lemma. Any accumulation point of the PSS method is a BF-vector.

- We cannot prove convergence to a CW-minima, but...
The PSS method - Results

Under the general setting:

Lemma. Any accumulation point of the PSS method is a BF-vector.

- We cannot prove convergence to a CW-minima, but...

Theorem. Under the Lipschitz assumption, any accumulation point of the PSS method is an $L_2(f)$-stationary point.

- Better than IHT.
- Much less computations.
Numerical Results

- $f = f_{LI}$ with $A \in \mathbb{R}^{4 \times 5}$ (random).
- IHT with $L = 1.1L(f)$.
- IHT with $L = 2L(f)$.
- GSS
- PSS

1000 randomly generated initial vectors.

<table>
<thead>
<tr>
<th>BF vector (i)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_1(i)$</td>
<td>329</td>
<td>50</td>
<td>63</td>
<td>92</td>
<td>229</td>
<td>0</td>
<td>130</td>
<td>0</td>
<td>61</td>
<td>46</td>
</tr>
<tr>
<td>$N_2(i)$</td>
<td>340</td>
<td>59</td>
<td>0</td>
<td>89</td>
<td>256</td>
<td>0</td>
<td>187</td>
<td>0</td>
<td>69</td>
<td>0</td>
</tr>
<tr>
<td>$N_3(i)$</td>
<td>813</td>
<td>0</td>
<td>0</td>
<td>112</td>
<td>0</td>
<td>0</td>
<td>75</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$N_4(i)$</td>
<td>772</td>
<td>0</td>
<td>0</td>
<td>92</td>
<td>0</td>
<td>0</td>
<td>93</td>
<td>0</td>
<td>43</td>
<td>0</td>
</tr>
</tbody>
</table>
Numerical Results

Quadratic equations:

\[(a_i^T x)^2 = c_i, \quad i = 1, 2, \ldots, m\]

\[\|x\|_0 \leq s\]

- \(m = 80, n = 120\).
- \(s = 3, 4, \ldots, 10\).
- 100 randomly generated initial vectors.

<table>
<thead>
<tr>
<th>s</th>
<th>(N_{PSS})</th>
<th>(N_{GSS})</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>27</td>
<td>73</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>69</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
THANK YOU FOR YOUR ATTENTION