STRUCTURE OF NILPOTENT MATRICES OVER FIELDS

NATALIE CAMPBELL†, KEVIN N. VANDER MEULEN†, AND ADAM VAN TUYL‡

Abstract. A zero-nonzero pattern A is said to be potentially nilpotent over a field F if there exists a nilpotent matrix with entries in F having zero-nonzero pattern A. We explore the construction of potentially nilpotent patterns over a field. We present classes of patterns which are potentially nilpotent over a field F if and only if the field F contains certain roots of unity. We then introduce some sparse patterns of order $n \geq 4$ which are spectrally arbitrary over \mathbb{C} but not over \mathbb{R}. We also identify all irreducible patterns of order four which are potentially nilpotent over \mathbb{R} or \mathbb{C}.

Key words. Nonzero pattern, Spectrum, Potentially nilpotent, Spectrally arbitrary, Nilpotent-Jacobian method.

AMS subject classifications. 15A18, 05C05, 05C50, 15B35.

†Received by the editors on February 18, 2011. Accepted for publication on August 21, 2011. Handling Editor: Michael Tsatsomeros.

‡Department of Mathematics, Redeemer University College, Ancaster, ON L9K 1J4, Canada (ncampbell@redeemer.ca, kvanderm@redeemer.ca).

‡Department of Mathematical Sciences, Lakehead University, Thunder Bay, ON P7B 5E1, Canada (avantuyl@lakeheadu.ca).