TWO SPECIAL KINDS OF LEAST SQUARES SOLUTIONS FOR THE QUATERNION MATRIX EQUATION $AXB + CXD = E$ *

SHI-FANG YUAN† AND QING-WEN WANG‡

Abstract. By using the complex representation of quaternion matrices, the Moore–Penrose generalized inverse and the Kronecker product of matrices, the expressions of the least squares η-Hermitian solution with the least norm and the expressions of the least squares η-anti-Hermitian solution with the least norm are derived for the matrix equation $AXB + CXD = E$ over quaternions.

Key words. Matrix equation, Least squares solution, η-Hermitian matrix, η-Anti-Hermitian matrix, Moore–Penrose generalized inverse, Kronecker product, Quaternion matrices.

AMS subject classifications. 65F05, 65H10, 15A33.

* Received by the editors on July 19, 2011. Accepted for publication on January 26, 2012. Handling Editor: Bryan L. Shader.
† Department of Mathematics, Shanghai University, Shanghai 200444, P.R. China, and School of Mathematics and Computational Science, Wuyi University, Jiangmen 529020, P.R. China (ysf301@yahoo.com.cn). Supported by Natural Science Fund of China (61070150), Guangdong Natural Science Fund of China (1045290/2001065845), and Program for Guangdong Excellent Talents in University, Guangdong Education Ministry, China (LYM10128).
‡ Department of Mathematics, Shanghai University, Shanghai 200444, P.R. China (wqw858@yahoo.com.cn). Supported by grants from the Natural Science Foundation of China (11171205, 60672160), the Natural Science Foundation of Shanghai (11ZR1412500), the Ph.D. Programs Foundation of Ministry of Education of China (2009S108110001), and Shanghai Leading Academic Discipline Project (J50101).