AN EXTENSION OF THE CLASS OF MATRICES ARISING IN THE NUMERICAL SOLUTION OF PDES

CHENG-YI ZHANG\(^\dagger\), SHUANGHUA LUO\(^\dagger\), JICHENG LI\(^\ddagger\), AND FENGMIN XU\(^\¶\)

Abstract. This paper studies block matrices \(A = [A_{ij}] \in \mathbb{C}^{km \times km} \), where every block \(A_{ij} \in \mathbb{C}^{k \times k} \) for \(i, j \in (m) = \{1, 2, \ldots, m\} \) and \(A_{ii} \) is non-Hermitian positive definite for all \(i \in (m) \). Such a matrix is called an extended \(H \)–matrix if its block comparison matrix is a generalized \(M \)–matrix. Matrices of this type are an extension of generalized \(M \)–matrices proposed by Elsner and Mehrmann [L. Elsner and V. Mehrmann. Convergence of block iterative methods for linear systems arising in the numerical solution of Euler equations. Numer. Math., 59:541–559, 1991.] and generalized \(H \)–matrices by Nabben [R. Nabben. On a class of matrices which arise in the numerical solution of Euler equations. Numer. Math., 63:411–431, 1992.]. This paper also discusses some properties including positive definiteness and invariance under block Gaussian elimination of a subclass of extended \(H \)–matrices, especially, convergence of some block iterative methods for linear systems with such a subclass of extended \(H \)–matrices. Furthermore, the incomplete \(LDU \)–factorization of these matrices is investigated and applied to establish some convergent results on some iterative methods. Finally, this paper generalizes theory on generalized \(H \)–matrices and answers the open problem proposed by R. Nabben.

Key words. Extended \(H \)–matrices, Generalized \(M \)–matrices, Generalized \(H \)–matrices.

AMS subject classifications. 65F10, 65N22, 15A48.