INCIDENCE MATRIX AND COVER MATRIX OF NESTED INTERVAL ORDERS

YAOKUN WU† AND SHIZHEN ZHAO‡

Abstract. For any poset P, its incidence matrix \mathcal{I} and its cover matrix \mathcal{C} are the $P \times P$ $(0, 1)$ matrices such that $\mathcal{I}(x, y) = 1$ if and only if x is less than y in P and $\mathcal{C}(x, y) = 1$ if and only if x is covered by y in P. It is shown that \mathcal{I} and \mathcal{C} are conjugate to each other in the incidence algebra of P over a field of characteristic 0 provided P is the nested interval order. In particular, when P is the Bruhat order of a dihedral group, which consists of a special family of nested intervals, \mathcal{I} and \mathcal{C} turn out to be conjugate in the incidence algebra over every field. Moreover, \mathcal{I} and \mathcal{C} are proved to be conjugate in the incidence algebra over every field when P is the weak order of a dihedral group. Many relevant problems and observations are also presented in this note.

Key words. Hierarchy, Jordan canonical form, Rank, Strict incidence algebra.

AMS subject classifications. 06A07, 06A11, 15A21, 15A24, 20F55.