THE COMBINATORIAL INVERSE EIGENVALUE PROBLEM: COMPLETE GRAPHS AND SMALL GRAPHS WITH STRICT INEQUALITY∗

WAYNE BARRETT†, ANNE LAZENBY†, NICOLE MALLOY†, CURTIS NELSON‡, WILLIAM SEXTON†, RYAN SMITH§, JOHN SINKOVIC†, AND TIANYI YANG†

Abstract. Let G be a simple undirected graph on n vertices and let $\mathcal{S}(G)$ be the class of real symmetric $n \times n$ matrices whose nonzero off-diagonal entries correspond exactly to the edges of G. Given $2n - 1$ real numbers $\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \cdots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n$, and a vertex v of G, the question is addressed of whether or not there exists $A \in \mathcal{S}(G)$ with eigenvalues $\lambda_1, \ldots, \lambda_n$ such that $A(v)$ has eigenvalues μ_1, \ldots, μ_{n-1}, where $A(v)$ denotes the matrix with the vth row and column deleted. General results that apply to all connected graphs G are given first, followed by a complete answer to the question for K_n. Since the answer is constructive it can be implemented as an algorithm; a Mathematica code is provided to do so. Finally, for all connected graphs on 4 vertices it is shown that the answer is affirmative if all six inequalities are strict.

Key words. Graph, Interlacing inequalities, Inverse eigenvalue problem, Symmetric matrix.

AMS subject classifications. 05C50, 15A42, 15B57.

∗Received by the editors on August 16, 2012. Accepted for publication on July 31, 2013. Handling Editor: Ravi Bapat.
†Department of Mathematics, Brigham Young University, Provo, UT 84602, USA (wayne@math.byu.edu, alazenberry@gmail.com, nicolea.malloy@gmail.com, wnsexton@gmail.com, johnsinkovic@gmail.com, talentedbread@hotmail.com).
‡Department of Mathematics, University of Wyoming, Laramie, WY 82071, USA (curtisgn@gmail.com).
§Columbia University, New York, NY 10027, USA (rhs2132@columbia.edu).