ON THE SPECTRAL MOMENT OF GRAPHS WITH K CUT EDGES

SHUCHAO LI¹, HUIHUI ZHANG¹, AND MINJIE ZHANG³

Abstract. Let $A(G)$ be the adjacency matrix of a graph G with $\lambda_1(G), \lambda_2(G), \ldots, \lambda_n(G)$ its eigenvalues in non-increasing order. Call the number $S_k(G) := \sum_{i=1}^{n} \lambda_i^k(G)$ the kth spectral moment of G. Let $S(G) = (S_0(G), S_1(G), \ldots, S_{n-1}(G))$ be the sequence of spectral moments of G. For two graphs G_1 and G_2, we have $G_1 \prec_s G_2$ if $S_i(G_1) = S_i(G_2)$ for $i = 0, 1, \ldots, k-1$ and $S_k(G_1) < S_k(G_2)$ for some $k \in \{1, 2, \ldots, n-1\}$. Denote by \mathcal{G}_n^k the set of connected n-vertex graphs with k cut edges. In this paper, the first, the second, the last and the penultimate graphs, in the S-order, are determined among \mathcal{G}_n^k, respectively.

Key words. Spectral moment, Cut edge, Clique.

AMS subject classifications. 05C50, 15A18.