CHARACTERIZING LIE (ξ-LIE) DERIVATIONS ON TRIANGULAR ALGEBRAS BY LOCAL ACTIONS∗

XIAOFEI QI†

Abstract. Let $U = \text{Tri}(A, M, B)$ be a triangular algebra, where A, B are unital algebras over a field F and M is a faithful (A, B)-bimodule. Assume that $\xi \in F$ and $L : U \to U$ is a map. It is shown that, under some mild conditions, L is linear and satisfies $L([X, Y]) = [L(X), Y] + [X, L(Y)]$ for any $X, Y \in U$ with $[X, Y] = XY - YX = 0$ if and only if $L(X) = \varphi(X) + ZX + f(X)$ for all A, where φ is a linear derivation, Z is a central element and f is a central valued linear map. For the case $1 \neq \xi \in F$, L is additive and satisfies $L([X, Y]_\xi) = [L(X), Y]_\xi + [X, L(Y)]_\xi$ for any $X, Y \in U$ with $[X, Y]_\xi = XY - \xi YX = 0$ if and only if $L(I)$ is in the center of U and $L(A) = \varphi(A) + L(I)A$ for all A, where φ is an additive derivation satisfying $\varphi(\xi A) = \xi \varphi(A)$ for each A. In addition, all additive maps L satisfying $L([X, Y]_\xi) = [L(X), Y]_\xi + [X, L(Y)]_\xi$ for any $X, Y \in U$ with $XY = 0$ are also characterized.

Key words. Triangular algebras, Lie derivations, Derivations, ξ-Lie derivations, Nest algebras.

AMS subject classifications. 47B47, 16W25.

∗Received by the editors on December 1, 2012. Accepted for publication on October 6, 2013.
Handling Editor: Tin-Yau Tam.
†Department of Mathematics, Shanxi University, Taiyuan, 030006, P.R. China (xiaofeiqisxu@aliyun.com). Supported by National Natural Science Foundation of China (11101250), Youth Foundation of Shanxi Province (2012021004) and Young Talents Plan for Shanxi University.