ON THE KEMENY CONSTANT AND STATIONARY DISTRIBUTION VECTOR FOR A MARKOV CHAIN

STEVE KIRKLAND

Abstract. Suppose that A is an irreducible stochastic matrix of order n, and denote its eigenvalues by $1, \lambda_2, \ldots, \lambda_n$. The Kemeny constant, $K(A)$, for the Markov chain associated with A is defined as $K(A) = \sum_{j=2}^{n} \frac{1}{1-\lambda_j}$, and can be interpreted as the mean first passage from an unknown initial state to an unknown destination state in the Markov chain. Let w denote the stationary distribution vector for A, and suppose that $w_1 \leq w_2 \leq \cdots \leq w_n$. In this paper, we show that $K(A) \geq \sum_{j=1}^{n} (j-1)w_j$, and we characterise the matrices yielding equality in that bound. The results are established using techniques from matrix theory and the theory of directed graphs.

Key words. Stochastic matrix, Stationary distribution vector, Kemeny constant.

AMS subject classifications. 15B51, 60J10, 15A42.

*Received by the editors on July 16, 2013. Accepted for publication on April 30, 2014. Handling Editor: Daniel B. Szyld.
†Department of Mathematics, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada (stephen.kirkland@umanitoba.ca). The research presented in this paper was supported in part by the Science Foundation Ireland under grant numbers SFI/07/SK/I1216b and 11/RFP.1/MTH/3185, and by the University of Manitoba under grant number 315729–352500–2000.