THE MAXIMUM NULLITY OF A COMPLETE SUBDIVISION GRAPH IS EQUAL TO ITS ZERO FORCING NUMBER

WAYNE BARRETT†, STEVE BUTLER‡, MINERVA CATRAL§, SHAUN M. FALLAT¶, H. TRACY HALL∥, LESLIE HOGBEN∗∗, AND MICHAEL YOUNG††

Abstract. Barrett et al. asked in [W. Barrett et al. Minimum rank of edge subdivisions of graphs. Electronic Journal of Linear Algebra, 18:530–563, 2009.], whether the maximum nullity is equal to the zero forcing number for all complete subdivision graphs. We prove that this equality holds. Furthermore, we compute the value of $M(F, \bar{G}) = Z(\bar{G})$ by introducing the bridge tree of a connected graph. Since this equality is valid for all fields, \bar{G} has field independent minimum rank, and we also show that \bar{G} has a universally optimal matrix.

Key words. Zero forcing number, Maximum nullity, Minimum rank, Complete subdivision, Bridge tree, Universally optimal, Matrix, Graph.

AMS subject classifications. 05C50, 15A03, 15A18, 15B57.

Received by the editors on June 28, 2013. Accepted for publication on June 3, 2014. Handling Editor: Bryan L. Shader.

†Department of Mathematics, Brigham Young University, Provo UT 84602 (wayne@math.byu.edu).
‡Department of Mathematics, Iowa State University, Ames, IA 50011, USA (butler@iastate.edu).
§Department of Mathematics and Computer Science, Xavier University, Cincinnati, OH 45207, USA (catralm@xavier.edu).
¶Department of Mathematics and Computer Science, Xavier University, Cincinnati, OH 45207, USA (catralm@xavier.edu).
∗∗Department of Mathematics and Statistics, University of Regina, Regina, SK, Canada (shaun.fallat@uregina.ca). Research supported in part by an NSERC research grant.
∥Department of Mathematics, Brigham Young University, Provo UT 84602 (H.Tracy@gmail.com).
††Department of Mathematics, Iowa State University, Ames, IA 50011, USA (fallat@iastate.edu) and American Institute of Mathematics, 360 Portage Ave, Palo Alto, CA 94306 (hogben@aimath.org).
†‡Department of Mathematics, Iowa State University, Ames, IA 50011, USA (myoung@iastate.edu). Research supported in part by NSF DMS 0946431.