A finiteness principle for the smooth selection problem

Arie Israel – University of Texas at Austin
Outline

The smooth selection problem.
 Finiteness principle for the Smooth Selection Problem

The jet selection problem
 Finiteness principle for the Jet Selection Problem
 \((C_0, \delta_0)\)-convexity
 The relationship between Theorem A and Theorem B.

Proof of the finiteness principle for JSPs
 The refinement procedure.
 Two ingredients in the argument
We will discuss finiteness principles associated to selection problems.

The first problem has to do with the smooth selection of function values of a vector-valued function (SSP).

The second problem has to do with the smooth selection of jets of a scalar-valued function (JSP).
Preliminary notation:

$C^{m}(\mathbb{R}^{n})$ denotes the space of real-valued C^{m} functions on \mathbb{R}^{n}.

\mathcal{P} denotes the space of $(m-1)'st$ degree polynomials on \mathbb{R}^{n}.

We write $J_{x}(F)$ to denote the $(m-1)$-jet at x of a function F. Hence, $J_{x}(F) \in \mathcal{P}$

$C^{m}(\mathbb{R}^{n} \rightarrow \mathbb{R}^{D})$ denotes the space of \mathbb{R}^{D}-valued C^{m} functions on \mathbb{R}^{n}, namely the space of all functions $F = (F_{1}, \cdots, F_{D})$, where $F_{i} \in C^{m}(\mathbb{R}^{n})$ for each i.

Fix $m \geq 0$, $n \geq 1$, and $D \geq 1$.

Constants of the form C, l^{*}, $k^{\#}$ will usually depend only on m, n, D.
The smooth selection problem.

Fix:

- A cube $Q_0 \subset \mathbb{R}^n$ of sidelength δ_0.
- A finite set $E \subset Q_0$.
Smooth Selection Problem:

Given a collection of convex sets $K(x) \subset \mathbb{R}^D$ for each $x \in E$, and given $M > 0$, we want to know whether there is a function $F \in C^m(\mathbb{R}^n \to \mathbb{R}^D)$ such that

$$
\begin{cases}
F(x) \in K(x) \quad \forall x \in E \\
\|F\|_{C^m} \leq M.
\end{cases}
$$

We call F a C^m-selection of $\vec{K} = (K(x))_{x \in E}$, and we say that F is a solution of $SSP(\vec{K}, M)$.
Our goal is to determine a number $M_0 \in [0, \infty)$ such that

- $SSP(\vec{K}, M)$ has a solution if $M > CM_0$, but
- $SSP(\vec{K}, M)$ does not have a solution if $M < C^{-1}M_0$,

for a constant $C > 1$ depending only on m, n, D.
Finiteness principle for the Smooth Selection Problem

Theorem A
There are constants $k^\# = k^\#(m, n, D)$ and $C = C(m, n, D)$ such that the following holds.

Assume the **Finiteness Hypothesis**: For each $S \subset E$ with $\#(S) \leq k^\#$ there exists $F^S \in C^m(\mathbb{R}^n \to \mathbb{R}^D)$ with norm $\|F^S\|_{C^m} \leq M_0$ such that $F^S(x) \in K(x)$ for all $x \in S$.

Then there exists $F \in C^m(\mathbb{R}^n \to \mathbb{R}^D)$ with norm $\|F\|_{C^m} \leq CM_0$ such that $F(x) \in K(x)$ for all $x \in E$.

Remark: We answer our previous question by determining the order of magnitude of the smallest possible M_0 for which the **Finiteness Hypothesis** holds. This can be computed using convex programming.
The rôle of convexity

Convexity of the constraint sets $K(x)$ is required for our arguments to work. We intend to define a selection of the form

$$F = \sum_{Q \in CZ} \theta_Q^2 F_Q \text{ on } 5Q_0.$$

where CZ is a partition of the cube $5Q_0$ into dyadic subcubes, $\{\theta_Q^2\}$ is a partition of unity subordinate to $\{\frac{65}{64}Q : Q \in CZ\}$, and the F_Q solve local selection problems on $5Q$. In particular we know that $F_Q(x) \in K(x)$ for all $x \in E \cap \frac{65}{64}Q$.

We hope to prove that F is a selection. Now, if $x \in E$, then $F(x)$ is a convex combination of vectors in $K(x)$. In order to ensure that $F(x) \in K(x)$ we must require that $K(x)$ is convex.
The jet selection problem

Definition
A family of sets $\vec{\Gamma} = (\Gamma(x, M))_{x \in E, M > 0}$ is called a shape field if

1. Each $\Gamma(x, M)$ is a convex subset of \mathcal{P}.
2. $\Gamma(x, M) \subset \Gamma(x, M')$ for $M' > M$ and $x \in E$.
3. $|\partial^\beta P(x)| \leq M$ for all $P \in \Gamma(x, M)$.
Jet Selection Problem: Given $\vec{\Gamma}$ and given $M > 0$, we want to know whether there is an $F \in C^m(\mathbb{R}^n)$ such that

$$\begin{cases}
J_x F(x) \in \Gamma(x, M) \quad \forall x \in E \\
\|F\|_{C^m(\mathbb{R}^n)} \leq M.
\end{cases}$$

We call F a C^m-selection of $\vec{\Gamma}$, and we say that F is a solution of $JSP(\vec{\Gamma}, M)$.

- If the jet selection problem has a solution for some M then it has a solution for all $M' > M$.

- If $\exists M^*$ so that $\Gamma(x, M^*) \neq \emptyset$ for all $x \in E$, then $JSP(\vec{\Gamma}, M)$ has a solution for some $M > M^*$.
Finiteness principle for the Jet Selection Problem

Theorem B
There exists a constant \(k^\# = k^\#(m, n) \) such that the following holds. Fix a finite set \(E \subset Q_0 \), where \(Q_0 \) is a cube of sidelength \(\delta_0 \). Assume the shape field \(\vec{\Gamma} = (\Gamma(x, M))_{x \in E, M > 0} \) is \((C_0, \delta_0)\)-convex (see next slide).

Assume the **Finiteness Hypothesis**: For each \(S \subset E \) with \(\#(S) \leq k^\# \) there exists \(F^S \in C^m(\mathbb{R}^n) \) with \(\|F^S\|_{C^m} \leq M_0 \) and \(J_x F^S \in \Gamma(x, M_0) \) for all \(x \in S \).

Then there exists \(F \in C^m(\mathbb{R}^n) \) with \(\|F\| \leq CM_0 \) and \(J_x F \in \Gamma(x, C M_0) \) for all \(x \in E \).

Here, \(C \) depends on \(m, n, \) and \(C_0 \)
Definition: We say that $\tilde{\Gamma}$ is (C_0, δ_0)-convex if the following holds:

Suppose $0 < \delta \leq \delta_0$, $x \in E$, $M > 0$, $P_1, P_2 \in \Gamma(x, M)$, $R_1, R_2 \in \mathcal{P}$. Assume the estimates

\[|\partial^\beta (P_1 - P_2)(x)| \leq M \delta^{m-|\beta|} \]
\[|\partial^\beta R_1(x)| \leq \delta^{-|\beta|} \]
\[|\partial^\beta R_2(x)| \leq \delta^{-|\beta|}, \ \forall \ |\beta| \leq m - 1. \]

Assume also that $R_1 \circ_x R_1 + R_2 \circ_x R_2 = 1$, where \circ_x is the product on \mathcal{P} defined by $P \circ_x Q = J_x(P \cdot Q)$. Then $R_1 \circ_x R_1 \circ_x P_1 + R_2 \circ_x R_2 \circ_x P_2 \in \Gamma(x, C_0 M)$.
Remarks on \((C_0, \delta_0)\)-convexity: The \((C_0, \delta_0)\)-convexity condition arises because we intend to construct a selection of the form \(F = \sum_{Q \in CZ} \theta_Q^2 F_Q\). The partition of unity \(\{\theta_Q^2\}\) is subordinate to \(\{\frac{65}{64} Q : Q \in CZ\}\) and satisfies estimates of the form \(|\partial^\alpha \theta_Q^2| \leq C \delta_Q^{-|\alpha|}\). In our setup, the \(F_Q\) will solve local extension problems on \(5Q\); in particular, \(J_x F_Q \in \Gamma(x, M)\) for all \(x \in E \cap \frac{65}{64} Q\). Also, \(F_Q - F_Q'\) will be small in a suitable sense, when \(Q, Q'\) are neighboring CZ cubes.

When we measure the jet of \(F\) at a point \(x \in E\) we will have to control sums of the form

\[
J_x F = \sum_{i=1}^{L} R_i \circ_x R_i \circ_x P_i,
\]

where \(\{P_i\}\) are jets of the form \(J_x F_{Q_i}\) and \(R_i\) are jets of the form \(J_x \theta_{Q_i}\) for a list of CZ cubes \(\{Q_i\}_{i=1}^{L}\). By bootstrapping the \((C_0, \delta_0)\)-convexity condition, we can ensure that \(J_x F\) will belong to \(\Gamma(x, CM)\) for a constant \(C\).
The relationship between Theorem A and Theorem B.

We can use Theorem B (FP for JSPs) to prove Theorem A (FP for SSPs).

We will explain how to encode a smooth selection problem for the function space \(C^m(\mathbb{R}^n \rightarrow \mathbb{R}^D) \) as a jet selection problem for the function space \(C^{m+1}(\mathbb{R}^{n+D}) \).
We will use coordinates \((x, \xi)\) on \(\mathbb{R}^{n+D} = \mathbb{R}^n \times \mathbb{R}^D\).

Let \(\mathcal{P}^+ := \) the space of real-valued \(m\)'th degree polynomials on \(\mathbb{R}^{n+D}\).

Given a smooth function \(F : \mathbb{R}^{n+D} \to \mathbb{R}\), denote

\[
\nabla_x F = (\partial_{x_1} F, \cdots, \partial_{x_n} F), \\
\nabla_\xi F = (\partial_{\xi_1} F, \cdots, \partial_{\xi_D} F),
\]

Write \(J^+_x F\) to denote the \(m\)-jet of a function \(F : \mathbb{R}^{n+D} \to \mathbb{R}\). Hence, \(J^+_x F \in \mathcal{P}^+\).
The embedding trick

Fix \(\vec{K} = (K(x))_{x \in E} \), where \(K(x) \) are convex subsets of \(\mathbb{R}^D \).

We associate to \(E \subset \mathbb{R}^n \) the set \(E^+ \subset \mathbb{R}^{n+D} \) defined by \(E^+ := \{(x, 0) : x \in E\} \).

Using \(\vec{K} \), we define a particular shape field \(\vec{\Gamma} \) on \(E^+ \).

For \((x, 0) \in E^+ \) and \(M > 0 \), we set

\[
\Gamma((x, 0), M) = \left\{ P \in \mathcal{P}^+ : P(x, 0) = 0, \quad \nabla_\xi P(x, 0) \in K(x), \quad |\partial_x^\alpha \partial_\xi^\beta P(x, 0)| \leq M \right\}.
\]
We relate the existence of an \(F = (F_1, \cdots, F_D) \in C^m(\mathbb{R}^n \to \mathbb{R}^D) \) satisfying

\[
SSP(\vec{K}, M) : \begin{cases}
F(x) \in K(x) \text{ for all } x \in E. \\
norm{F}_{C^m} \leq M.
\end{cases}
\]

to the existence of an \(F^+ \in C^{m+1}(\mathbb{R}^{n+D} \to \mathbb{R}) \) satisfying

\[
JSP(\vec{\Gamma}, M) : \begin{cases}
J^+_{(x,0)} F^+ \in \Gamma((x, 0), M) \text{ for all } (x, 0) \in E+. \\
norm{F^+}_{C^{m+1}} \leq M.
\end{cases}
\]

Embedding lemma

If \(F^+ \) solves \(JSP(\vec{\Gamma}, M) \) then there exists an \(F \) solving \(SSP(\vec{K}, M) \).

If \(F \) solves \(SSP(\vec{K}, M) \) then there exists an \(F^+ \) solving \(JSP(\vec{\Gamma}, C_{EM}) \).
Proof of the embedding lemma

JSP \implies SSP:
Suppose $F^+ \in C^{m+1}(\mathbb{R}^{n+D})$ is a solution to $JSP(\vec{\Gamma}, M)$.
Set $F(x) = \nabla_\xi F^+(x, 0)$ which is evidently a $C^m(\mathbb{R}^n \to \mathbb{R}^D)$ function.

Furthermore,
\[
\begin{aligned}
\|F\|_{C^m} &\leq \|F^+\|_{C^{m+1}} \leq M. \\
F(x) &\in K(x) \quad \forall x \in E.
\end{aligned}
\]

Hence, F is a solution to $SSP(\vec{K}, M)$.
SSP \implies JSP:

Suppose \(F = (F_1, \cdots, F_D) \in C^m(\mathbb{R}^n \to \mathbb{R}^D) \) is a solution to \(SSP(\vec{K}, M) \).
That is, \(F(x) \in K(x) \) for all \(x \in E \) and \(\|F\|_{C^m} \leq M \).

Claim: There exists a function \(F^+ \in C^{m+1}(\mathbb{R}^{n+D}) \) such that
\[
\|F^+\|_{C^{m+1}} \leq CM \quad \text{and} \quad F^+|_{\xi=0} = 0 \quad \text{and} \quad \nabla_\xi F^+|_{\xi=0} = F.
\]

With this claim, we can finish the proof of the embedding lemma. Indeed, for any \((x, 0) \in E^+ \) we have \(F^+(x, 0) = 0, \nabla_\xi F^+(x, 0) = F(x, 0) \in K(x) \), and
\[
|\partial^\alpha_x \partial^\beta_\xi F^+(x, 0)| \leq \|F^+\|_{C^{m+1}} \leq CM \quad \text{for} \quad |\alpha| + |\beta| \leq m.
\]
So, \(F^+ \) is a solution to \(JSP(\vec{\Gamma}, CM) \).
Proof of claim: Given \((x_0, 0) \in \mathbb{R}^n \times \{0\}\), set

\[
P_{(x_0,0)}(x, \xi) := \xi \cdot J_{x_0} F(x) = \sum_{i=1}^{D} \xi_i J_{x_0} F_i(x)
\]

Note that

\[
P_{(x_0,0)}(x_0, 0) = \sum_{i=1}^{D} \xi_i J_{x_0} F_i(x_0)|_{\xi=0} = 0,
\]

\[
\nabla_{\xi} P_{(x_0,0)}(x_0, 0) = (J_{x_0} F_1(x_0), \cdots, J_{x_0} F_D(x_0)) = F(x_0) \in K(x_0),
\]

while

\[
|\partial_x^\alpha \partial_{\xi}^\beta P_{(x_0,0)}(x_0, 0)| \leq CM \text{ for } |\alpha| + |\beta| \leq m.
\]

Hence, \(P_{(x_0,0)} \in \Gamma(x_0, CM)\).
Proof of claim (continued): Finally, it is straightforward to show that the Whitney field \(\{P(x_0,0)\} \) \((x_0,0) \in \mathbb{R}^n \times \{0\} \) satisfies the Whitney conditions for \(C^{m+1}(\mathbb{R}^{n+D}) \). Thus, we can use the classical Whitney extension theorem to extend the Whitney field \(\{P(x_0,0)\} \) \((x_0,0) \in \mathbb{R}^n \times \{0\} \) to a function \(F^+ \in C^{m+1}(\mathbb{R}^{n+D} \rightarrow \mathbb{R}) \).
Lemma
The set \(\vec{\Gamma} \) is \((C_0, \delta_0)\)-convex, for a constant \(C_0 = C_0(m, n, D) \). Recall \(\delta_0 \) is the sidelength of \(Q_0 \).
Proof of Lemma: Under the conditions in the statement of \((C_0, \delta_0)\)-convexity, in particular \(R_1 \circ_x R_1 + R_2 \circ_x R_2 = 1\) and \(P_i \in \Gamma((x, 0), M)\), we have

\[
(R_1 \circ_x R_1 \circ_x P_1 + R_2 \circ_x R_2 \circ_x P_2)(x, 0) = 0
\]

and

\[
\nabla_\xi(R_1 \circ_x R_1 \circ_x P_1 + R_2 \circ_x R_2 \circ_x P_2)(x, 0)
\]

\[
= (R_1 \circ_x R_1 \circ_x \nabla_\xi P_1 + R_2 \circ_x R_2 \circ_x \nabla_\xi P_2)(x, 0) \in K(x)
\]

because \(R_1 \circ_x R_1 + R_2 \circ_x R_2 = 1\) and \(\nabla_\xi P_i(x, 0) \in K(x)\), and \(K(x)\) is convex, and furthermore

\[
|\partial^\alpha_x \partial^\beta_\xi (R_1 \circ_x R_1 \circ_x P_1 + R_2 \circ_x R_2 \circ_x P_2)(x, 0)|
\]

\[
= |\partial^\alpha_x \partial^\beta_\xi (P_2 + R_1 \circ_x R_1 \circ_x (P_1 - P_2))(x, 0)|
\]

\[
\leq CM.
\]

and hence, we’ve shown \(R_1 \circ_x R_1 \circ_x P_1 + R_2 \circ_x R_2 \circ_x P_2 \in \Gamma((x, 0), CM)\).
Proof that Theorem B implies Theorem A

We let $k^\#$ be the constant from the statement of Theorem B for the function space $C^{m+1}(\mathbb{R}^{n+D})$.

Then we have the chain of implications:

- **Finiteness Hypothesis with** $k^\#$ for $(\vec{K}, M) \implies$ (via embedding lemma)
- **Finiteness Hypothesis with** $k^\#$ for $(\vec{\Gamma}, CEM) \implies$ (via Theorem B)
- Existence of solution to $JSP(\vec{\Gamma}, CEM) \implies$ (via embedding lemma)
- Existence of solution to $SSP(\vec{K}, CEM)$.
Proof of the finiteness principle for JSPs

Recall the setting: We fix integer $m \geq 0$ and $n \geq 1$, and

- A cube $Q_0 \subset \mathbb{R}^n$ of sidelength δ_0.
- A finite set $E \subset Q_0$.
- A (C_0, δ_0)-convex shape field $\vec{\Gamma}_0 = (\Gamma_0(x, M))_{x \in E, M > 0}$, where $\Gamma_0(x, M)$ is a convex set of polynomials of degree at most $m - 1$ on \mathbb{R}^n.
- A sufficiently large integer constant $k^\#$.
We want to know whether, for a given $M > 0$, there is a solution to

$$JSP(\vec{\Gamma}, M) : \begin{cases} J_x F \in \Gamma_0(x, M) \quad \forall x \in E \\ \|F\|_{C^m} \leq M. \end{cases}$$

(1)

Our procedure for answering this question consists in building a set of necessary conditions for the existence of a selection F for the given $M > 0$. We recognize a trivial necessary condition:

$$\text{(NC}_0) \quad \Gamma_0(x, M) \neq \emptyset \quad \forall x \in E.$$
The gameplan:

- We will describe a set of conditions \((NC_1), (NC_2), \cdots, (NC_{l^*})\) which are necessary for the existence of a \(C^m\) selection. These conditions arise by iteratively applying Taylor's theorem to obtain new conditions on the jets of a selection.

- We will prove a stabilization lemma that says that for sufficiently large \(l^* = l^*(m, n)\), the conditions \((NC_1), (NC_2), \cdots, (NC_{l^*})\) imply the existence of an \(C^m\) selection.

- We will then show that the finiteness hypothesis implies the conditions \((NC_1), (NC_2), \cdots, (NC_{l^*})\) as long as \(k^\#\) is large enough.
The refinement procedure.

Our goal is to define a descending sequence of convex sets

\[\Gamma_0(x, M) \supset \Gamma_1(x, M) \supset \cdots \supset \Gamma_l(x, M) \supset \cdots \]

satisfying the following properties:

1. \(\overrightarrow{\Gamma}_l = (\Gamma_l(x, M))_{x \in E, M > 0} \) is a \((C_l, \delta_0)\)-convex shape field for all \(l \geq 0 \), for a constant \(C_l \) determined by \(C_0, m, n, \) and \(l \).

2. If \(F \in C^m(\mathbb{R}^n) \) satisfies \(J_x F \in \Gamma_0(x, M) \) for all \(x \in E \), and \(\|F\|_{C^m} \leq M \), then \(J_x F \in \Gamma_l(x, M) \) for all \(x \in E \) and all \(l \geq 0 \). Hence, in particular, the condition "\(\Gamma_l(x, M) \neq \emptyset \ \forall x \in E \)" is necessary for the existence of a selection.
To accomplish our goal, given \(l \geq 0 \), we define inductively

\[
\Gamma_{l+1}(x, M) := \left\{ P \in \Gamma_l(x, M) : \text{ for all } y \in E, \right. \\
\left. \text{there exists } P' \in \Gamma_l(y, M) \text{ s.t.} \right. \\
|\partial^\beta (P - P')(x)| \leq C_T M |x - y|^{m-|\beta|} \text{ for } |\beta| \leq m \}.
\]

where \(C_T \) is the constant arising in Taylor’s theorem for \(C^m(\mathbb{R}^n) \) functions.

We call \(\Gamma_l \) the “\(l \)'th refinement of \(\Gamma_0 \)”.

We prove the properties of the first refinement $\vec{\Gamma}_1 = (\Gamma_1(x, M))_{x \in E, M > 0}$.

A straightforward calculation shows that $\vec{\Gamma}_1$ is a (C_1, δ_0)-convex shape field for a constant C_1 depending on m, n, and C_0.

Assume $F \in C^m(\mathbb{R}^n)$ satisfies $\|F\|_{C^m} \leq M$ and $J_x F \in \Gamma(x, M)$ for all $x \in E$. Then, for any $x, y \in E$, we have by Taylor’s theorem that

$$|\partial^\beta (J_x F - J_y F)(x)| \leq C_T M |x - y|^{m-|\beta|}.$$

Now, since $J_y F \in \Gamma_0(y, M)$, we conclude that $J_x F \in \Gamma_1(y, M)$. Hence, by iterating this argument, we conclude that if $\|F\|_{C^m} \leq M$ then

$$J_x F \in \Gamma_0(x, M) \forall x \implies J_x F \in \Gamma_1(x, M) \forall x \implies J_x F \in \Gamma_2(x, M) \forall x \implies \cdots$$

and all the shape fields $\vec{\Gamma}_l$ are (C_l, δ_0)-convex.
Two ingredients in the argument

Our finiteness principle for JSPs will then follow from the next two results

Finiteness lemma
Given \(l \geq 1 \), there exists \(k^{\#} = k^{\#}(l, m, n) \) such that the following holds. Suppose that for all \(S \subset E \) with \(\#(S) \leq k^{\#} \) there exists an \(F^S \in C^m(\mathbb{R}^n) \) such that \(\|F^S\|_{C^m} \leq M \) and \(J_xF^S \in \Gamma(x, M) \) for all \(x \in E \). Then \(\Gamma_l(x, CM) \neq \emptyset \) for all \(x \in E \).
In fact, one can take \(k^{\#} = (\dim \mathcal{P} + 2)^l \).

Stabilization theorem (weak version)
There is a constant \(l_* = l_*(m, n) \) such that if \(\Gamma_{l^*}(x_0, M_0) \neq \emptyset \) for some \(x_0 \in E, M_0 > 0 \), then there exists an \(F \in C^m(\mathbb{R}^n) \) with \(\|F\|_{C^m} \leq CM_0 \) and \(J_xF \in \Gamma(x, CM_0) \) for all \(x \in E \).
Proof of finiteness lemma

Consider the case \(l = 1 \). Then \(k^\# = (\dim \mathcal{P} + 2)^l = \dim \mathcal{P} + 2 \). Note that \(\Gamma_1(x, M) \) can be written as the intersection over all \(y \in E \) of convex subsets

\[
K_y(x) := \left\{ P \in \Gamma_0(x, M) : \exists P' \in \Gamma_0(y, M) \text{ s.t.} \right. \\
|\partial^\beta (P - P')(x)| \leq C_T M |x - y|^{m-|\beta|} \text{ for } |\beta| \leq m \left. \right\} \subset \mathcal{P}.
\]
By Helly's Theorem, this intersection is nonempty iff any \(\dim P + 1 = k^\# - 1 \) element subcollection of \(\{K_{x,y}\}_{y \in E} \) has nonempty intersection.

Thus, we need to show that if \(y_1, \ldots, y_{k^\#-1} \in E \) then

\[
\bigcap_{i=1}^{k^\#-1} K_{x,y_i} = \left\{ P \in \Gamma_0(x, M) : \exists P_i \in \Gamma_0(y, M) \text{ s.t.} \right. \\
|\partial^\beta (P - P_i)(x)| \leq C_T M |x - y|^{m - |\beta|} \text{ for } |\beta| \leq m, 1 \leq i \leq k^\# - 1 \right\}.
\]

is nonempty. By the **finiteness hypothesis**, there is a \(C^m \) selection \(F \) associated to the \(k^\# \) element subset \(S = \{x, y_1, \ldots, y_{k^\#-1}\} \). If we take \(P = J_x F \) and \(P_i = J_{y_i} F \), then we see that

\[
P \in \bigcap_{i=1}^{k^\#-1} K_{x,y_i}.
\]
We omit the proof of the case $l \geq 2$, which follows by iterating the previous argument.
Comments on the proof of the Stabilization theorem:

The proof of the Stabilization theorem uses the technology of labels, local selection problems, and the Calderón-Zygmund decompositions detailed in Charlie’s lectures.
In the present setting, a label \mathcal{A} will consist of a set of multiindices of order at most $m - 1$.

We say that $(P_\alpha)_{\alpha \in \mathcal{A}}$ is an $(\mathcal{A}, \delta, C_B)$-basis for a convex set $\Gamma \subset P$ at (x_0, M_0, P^0) if

- $P^0 \in \Gamma$.
- $P^0 + C_B^{-1} M_0 \delta^{m-|\alpha|} P_\alpha$, $P^0 - C_B^{-1} M_0 \delta^{m-|\alpha|} P_\alpha \in \Gamma$ for each $\alpha \in \mathcal{A}$.
- $\partial^\beta P_\alpha(x_0) = \delta_{\alpha\beta}$.
- $|\partial^\beta P_\alpha(x_0)| \leq C_B \delta^{\alpha - |\beta|}$.
One then introduces the notion of a local selection problem, and defines what it means to say that a local selection problem carries a label \mathcal{A}. Unfortunately, we do not have enough time to cover this. Due to complications related to transporting a polynomial from one basepoint to another, an additional notion is required to allow the proof to proceed; namely, the notion of a “monotonic label” is a new detail required in this setting. One focuses only on the monotonic labels so as to obtain a crucial consistency condition.
Thanks!